53 research outputs found

    A Deterministic Analysis of Decimation for Sigma-Delta Quantization of Bandlimited Functions

    Full text link
    We study Sigma-Delta (ΣΔ\Sigma\Delta) quantization of oversampled bandlimited functions. We prove that digitally integrating blocks of bits and then down-sampling, a process known as decimation, can efficiently encode the associated ΣΔ\Sigma\Delta bit-stream. It allows a large reduction in the bit-rate while still permitting good approximation of the underlying bandlimited function via an appropriate reconstruction kernel. Specifically, in the case of stable rrth order ΣΔ\Sigma\Delta schemes we show that the reconstruction error decays exponentially in the bit-rate. For example, this result applies to the 1-bit, greedy, first-order ΣΔ\Sigma\Delta scheme

    One-bit compressive sensing with norm estimation

    Full text link
    Consider the recovery of an unknown signal x{x} from quantized linear measurements. In the one-bit compressive sensing setting, one typically assumes that x{x} is sparse, and that the measurements are of the form sign(ai,x){±1}\operatorname{sign}(\langle {a}_i, {x} \rangle) \in \{\pm1\}. Since such measurements give no information on the norm of x{x}, recovery methods from such measurements typically assume that x2=1\| {x} \|_2=1. We show that if one allows more generally for quantized affine measurements of the form sign(ai,x+bi)\operatorname{sign}(\langle {a}_i, {x} \rangle + b_i), and if the vectors ai{a}_i are random, an appropriate choice of the affine shifts bib_i allows norm recovery to be easily incorporated into existing methods for one-bit compressive sensing. Additionally, we show that for arbitrary fixed x{x} in the annulus rx2Rr \leq \| {x} \|_2 \leq R, one may estimate the norm x2\| {x} \|_2 up to additive error δ\delta from mR4r2δ2m \gtrsim R^4 r^{-2} \delta^{-2} such binary measurements through a single evaluation of the inverse Gaussian error function. Finally, all of our recovery guarantees can be made universal over sparse vectors, in the sense that with high probability, one set of measurements and thresholds can successfully estimate all sparse vectors x{x} within a Euclidean ball of known radius.Comment: 20 pages, 2 figure

    Quantized Compressed Sensing for Partial Random Circulant Matrices

    Full text link
    We provide the first analysis of a non-trivial quantization scheme for compressed sensing measurements arising from structured measurements. Specifically, our analysis studies compressed sensing matrices consisting of rows selected at random, without replacement, from a circulant matrix generated by a random subgaussian vector. We quantize the measurements using stable, possibly one-bit, Sigma-Delta schemes, and use a reconstruction method based on convex optimization. We show that the part of the reconstruction error due to quantization decays polynomially in the number of measurements. This is in line with analogous results on Sigma-Delta quantization associated with random Gaussian or subgaussian matrices, and significantly better than results associated with the widely assumed memoryless scalar quantization. Moreover, we prove that our approach is stable and robust; i.e., the reconstruction error degrades gracefully in the presence of non-quantization noise and when the underlying signal is not strictly sparse. The analysis relies on results concerning subgaussian chaos processes as well as a variation of McDiarmid's inequality.Comment: 15 page
    corecore